THERMODYNAMICS OF IRREVERSIBLE PROCESSES
AND THE LYAPUNCV-FUNCTION METHOD

V. L. Bazhanov and I. I. Gol'denblat UDC 678:539.4.001.2
A connection is established between the production of entropy in irreversible processes and
the Lyapunov function of the corresponding system of equations. Thermodynamic limitations

are formulated on the functions that enter in the kinetic equations. The results are illus-
trated with relaxation processes in viscoelastic media.

1. Principles of Classical Thermodynamics

Classical thermodynamics is based on the concepts of the element of work performed on the system

84 = X,dy, + ...+ X,.dy, 1.1)

and the element of heat 6Q delivered to the system. Here X and yj are generalized thermodynamic forces
and coordinates, respectively.

The first law of thermodynamics states that when a system goes from a given state to an infinitesi-
mally close one the increment of the internal energy E is equal to the sum of the heat delivered to the system
and the work performed on the system

dE = 8Q 4- 64 (1.2)

It must be emphasized here that the internal energy of the system is a unique function of its instan-
taneous state. The increment of the internal energy does not depend on the path traversed by the system
from one state to the other. Cn the contrary, the work performed on the system and the heat delivered to
it depend in the general case on the path. Thus, dE is a total differential while §A and 6Q are not total dif-
ferentials. :

The second law of thermodynamics states that the amount of heat obtained in.any reversible process
always has integrating divisors and that among these divisors there is one that depends only on the tem-~
perature of the system.

The second law of thermodynamics can be expressed analytically in the form

dS = 8Q/T (1.3)
where T is the absolute temperature and S is the entropy of the system.

As is well known, the very concept of the absolute temperature can be introduced only on the basis of
the secondlaw. Just like the internal energy, the entropy S is a path~independent function of the state of the system.

Classical thermodynamics asserts also that in the case of nonequilibrium processes there exists the
inequality

s > 8QIT (1.4)
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2. Noneguilibrium States of Thermodynamic Systems

In classical thermodynamics of equilibrium states or processes, all the thermodynamic parameters
(including the absolute temperature) and functions have rigorous and exact definitions.

Considerable difficulties arise in the definition of the fundamental thermodynamic parameters when
it comes to nonequilibrium states or processes.

The definitions of purely geometric or kinematic parameters, such as particle displacements or
velocities, the strain tensor or the strain-rate tensor, etc., encounter no difficulty whatever even in the
case of nonequilibrium processes. It is also possible to define uniquely the mass or the density ofa medium.

Such concepts, however, as the temperature of a nonequilibrium state of the system or the stress
tensor must be suitably defined.

We note that in the case of stationary nonequilibrium processes, the concepts of temperature and
stress tensor (as well as of many other thermodynamic parameters) acquire natural phenomenological
definitions, since these parameters can be measured by the usual instruments used in the case of equilib-
rium processes.

As is well known, in papers devoted to the thermodynamics of arbitrary irreversible processes, the
widely used main parameters are the thermodynamic parameters for which definitions exist only in the
case of equilibrium sfates. It is assumed in this case, however, that the thermodynamic parameters of the
nonequilibrium processes can be assigned a definite meaning by using the methods of statistical physics.
This makes it possible to use them also in phenomenological treatments. We note in this connection that
"according to testimony left by Planck in his memoirs, even Kirchhoff wanted to restrict the entropy con-
cept to reversible processes. The firm conviction of the generality of the concept, which Planck expressed
already in his dissertation, had led him in 1900 to the radiation law and to quantum theory" [3].

3. The Principle of Local Equilibrium and Its Generalization

The thermodynamics of irreversible processes usually begins with the following premises:

1) the second law of thermodynamics of reversible processes remains in force also in the case of irre-
versible processes, but only locally (this is the so-called principle of local equilibrium state); i.e., it is
assumed that relations (1.2) and (1.3) are valid locally.

2) In each local volume, all the thermodynamic functions (internal energy, free energy, entropy, ete.)
are functions of the same parameters as in the case of equilibrium; consequently, these functions do not
depend explicitly on the coordinates and on the time.

3) The gradients of the velocities, temperatures, stresses, etc. are small enough in the considered
system.

4) The total change of the energy and entropy is made up additively of the changes of these functions
in the individual elements of the system.

It might seem that the four foregoing premises of the thermodynamics of irreversible processes
contradict strongly the principle of classical thermodynamics of reversible processes, particularly the
fundamental classical relation that states that the entropy of an adiabatically isclated system increases in
any irreversible process. It is easy to verify, however, that there is no contradiction here. Relation (1.3)
is assumed valid only locally, so that when the system as a whole is considered the assumption of local
equilibrium makes it possible to calculate the entropy change due to the nonequilibrium processes. It is
thus possible to demonstrate for an adiabatically isolated system, in full accord with classical thermody-
namics, that the entropy as a whole increases for such a system in the case of an irreversible process.

It should be noted, however, that the principle of local equilibrium is valid only for the so-called
transport phenomena (thermal conductivity, diffusion, etc.). In the case of viscous resistances, irreversible
chemical reactions, etc., relation (1.3) no longer holds even locally. It must be replaced by

dS = 8QIT + do 3.1)

where do is the local production of entropy.

Thus, in the case of irreversible processes, both the functional [dQ/T and the functional of entropy
production depend on the path taken by the system from one state to the other. Their sum, however, which
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is equal to the change of the entropy for the indicated transition, does not depend on the path. This is the
most general formulation of the second law of thermodynamics.

The foregoing principles are sufficiently well-known and are used in many papers, although their
authors frequently do not formulate precisely the initial assumptions used by them.

We now note the following: it is proved in the general theory of systems that if the parameters of a
dynamic system are defined for a continuous time and are sufficiently smooth functions of the time, then,
subject to some other conditions which will not be formulated here, the parameters of the dynamic system
must satisfy a certain system of differential equations. This theorem, due to R. Kalman, holds also for
irreversible processes occurring in thermodynamic systems, since any thermodynamic system satisfies
the definition formulated for a dynamic system by R. Kalman, P. Falb, and M. Arbib [4]. We can thus de-
seribe irreversible thermodynamic systems with the aid of systems of differential equations.

4. Kinetic Equations of Irreversible Processes,

Entropy Production, and the Lyapunov-Function Method

We consider a thermodynamic system whose generalized coordinates (y)) are made up additively of )
reversible (yk°) and irreversible (y, *) parts, i.e.,

Y =Y + Yp* 4.1)

Assume that the defining equations of the system are expressed for an isothermal process (T = const)
as follows:

for the reversible parts of the generalized coordinates
v, = 2 ¢ (4.2)
for the irreversible parts of the generalized coordinates
D b (X Koy oo Xa 1) @.3)
We assume that the coefficients Ay in Egs. (4.2} and the functions fy in (4.3) are such that the follow-

ing conditions are satisfied:

D 4uX X >0 @.4)

fx(0,0,..,0, T)=20 4.5)

In addition, we assume that the coefficients in (4.2) are such that Akj = Ajk.
Differentiating (4.1) and (4.2) with respect to time and taking '(4.3) into account, we obtain the follow-
ing kinetic equations for an isothermal process occurring in the considered system:

dy» dXi a
ﬁzzt‘im—g;‘“{- fu( Xy Xpy ooy Xy T) 4.6)

According to the definition given above for generalized thermodynamic forces and the generalized
coordinates corresponding to them, the rate of entropy production is obviously

2,8 1 dy,.* 1 ;
o= = X S = LS X (X, Xy Xy 1) .7)
k

The rate of entropy change due to the irreversible processes is designated here, as is customary, by
d;jS/dt, and should be positive in accord with the principles of thermodynamics.

We emphasize that we do not calculate here the entropy of the system as such. To solve this problem
it would be necessary to consider the heat exchange between the system and the ambient. The analysis that
follows is based only on the fact that the rate of entropy production due to the irreversible processes in the
system should be positive.
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Since the temperature is positive, it follows from (4.7) that

ZkaK(le XZv"'v.Xm T)>O (4.8)
k

Thus, the kinetic equations (4.6) of the considered system are meaningful if the functions Jk are such
that this condition is satisfied. This is required by thermodynamics.

We consider now the isothermal process of relaxation of general forces Xj, which occurs at fixed
values of the generalized coordinates (y}, = const).

The relaxation equations take the form

dX,
DAk + (X1, Xoy oo Xpy 1) = 0 4.9)

We shall show that if the thermodynamic condition (4.8) is satisfied, then these equations indeed de-
scribe a relaxation process; i.e., they have solutions X; =0 as t —«. In other words, we must show that
the zero-order solution of (4.9) is asymptotically stable as a whole in the Lyapunov sense. We use for this
purpose the Lyapunov —Barbashin—Krasovskii theorem, which has the advantage that no limitations what-
ever are imposed on the values of the generalized forces X; at the instant of time t = 0. We now formulate
this theorem [1].

Assume that there exists a function V{x) with real values and with the following properties:
1) V(x) > 0 forall x=0, V(0) =0

2) [dvx)l/dt < 0 for all x=0

3) V(x) — = for [|x||—

Then the system
dz,

- =% (@1 Tay eeuy Ty &) (i =1, 2,..., 1)

is asymptotically stable as a whole at ¢;(0,0, ..., 0,t) =0.
In this formulation of the theorem, x is an n-dimensional vector, i.e., X = (X1, Xg, - + +» Xp)-

We choose the Lyapunov function for the considered system of relaxation equations (4.9) in the form

V=1 04X Xy 4.10)
ik

The assumption (4.4) made above concerning the coefficients Ay; implies that the presented quadratic
form (4.10) is positive definite at Xj = 0.

The time derivative of the Lyapunov function (4.10) is

av 2.4

Tit— = 12;! Aki —d;_ Xk
Multiplying (4.9) by Xj and summing over i and k, we get

ax,
ZAki Wl‘Xk + 2 Xfe (X3 Xoy ooy X0 T) =0
ik K

Hence

av ax,;
T = D An - Xp=— 2 X (X3, Xy e0r X0y TV KO
ik k

1

in accord with the thermodynamic condition (4.8).

In addition, it follows from (4.10) that V{0, 0, ..., 0) =0 and V—~w=as Xj —~ .
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Thus, all the conditions of the Lyapunov—Barbashin—Krasovskii theorem are fulfilled. Consequently,
if the fundamental thermodynamic requirement (4.8) is satisfied, then Egs. (4.9) actually describe a relaxa-
tion process. If is easy to note that in our system the rate of entropy production as a result of the irre-
versible relaxation of the thermodynamic forces is equal to

71 1 dV
o= = D Xofe (Xuy Xoy s Xy 1) = — 7 o (4.11)
k

It is known that any arbitrary (in a sufficiently broad sense [2]) function of a Lyapunov function is it~
self a Lyapunov function. One should therefore choose from among these Lyapunov functions those that
satisfy the prinecipal thermodynamic relation (4.7) for the considered system. In addition, N. N. Krasovskii
[5] has proved the existence of a Lyapunov function for any asymptotically stable system in the sense of
Lyapunov. This proves in essence the existence of entropy production by a nonequilibrium process in the
considered system.

Equation (4.11) is the starting point for the construction of the Lyapunov function whose properties
lead to conclusions concerning the behavior of the investigated system of equations.

We consider now a thermodynamic system whose generalized forces (X)) are made up additively of
reversible (X °) and irreversible (X *) parts, i.e.,

Xk:Xko+ Xh'* (4:-12)

Let us assume that the defining equations of the system for an isothermal process (T = const) take
the following forms:

for the reversible part of the generalized forces
Xk°=ZAkiyz (4.13)
1
for the irreversible part of the generalized forces

g (G 414
X-k*—fk('ﬁ'v'gt"v---v’d_t‘sT) ( )

We assume that the coefficients Ay, and the functions fj are such that the following conditions are
satisfied:

2 Apyrli >0 (4.15)
ik

£0(0,0,..,0,T) =0 ' (4.16)

Just as before, we assume that the coefficients in (4.13) are such that Agj = Aji- The basic kinetic
equations of an isothermal process of the considered type can be expressed in the form

dyr  dy; dy,
Xk:ZAkiyi+flc<‘d?Jt—lr ‘dyTz,my pral T) (4.17)
i

When the generalized forces are removed, the system under consideration admits of complete relaxa-
tion of the generalized coordinates. The relaxation equations are then written as follows:

o d 2y, ., .
S Al + f (75’7‘,73{3,...,77,1)=0 (4.18)

From the point of view of the thermodynamics, it is necessary and sufficient for the relaxation proc-
esses inour system that the rate of the entropy growth connected with this process be positive; i.e., it is
necessary and sufficient to satisfy the condition

4,8 1 dy 1 %W dyp dys dy,

L * Uk _ TN kg [OW1 Y2 _n

at T 2% 7 Tz_dt fk(dz RN dt.’T)>O
k [
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Since, however, the absolute temperature is always positive, it is necessary to have

dy"fk (d”,‘ i ;,“, T>>0 (4.19)

We choose a Lyapunov function in the form
V=" Ay
ik

Taking the assumptions made above concerning the coefficients Agj and the functions fi into account,
as well as the thermodynamic requirement (4.19), it is easy to show, repeating the reasoning of Sec. 3, that
all the requirements of the Lyapunov—Barbashin—Krasovskii theorem are satisfied, and therefore Eqgs.
(4.18) indeed describe the total relaxation of the generalized coordinates.

Let us consider one more problem. Assume that the generalized forces have reached certain values
and then remain constant:

X, = const (4.20)

It can be shown that in accord with (4.17) the generalized coordinates tend in this case to certain
finite limits. We assume that the generalized coordinates are made up at an arbitrary instant of time of
certain constant quantities y) ° and functions of the time gk(t), ie.,

4.21
B =pe+EO (&.21)
with .
0 =y"+80)=0, L(0)=—y"50
Then, taking (4.20) and (4.21) into account, the basic kinetic equations (4.17) take the form
de1  dEa En .
S+ i[5, %, T T) =0 (4-22)
if it is assumed that
Xy =2 Ay (4.23)
In accordance with (4.19), the functions Sk satisfy the thermodynamic requirement
dy , (des  dEs .
kf"(dtl’ ar et dt )>0 (4.24)

We assume also that the coefficients Ay are symmetrical, i.e., Ay = Ay, and are such as to satisfy
the inequality

DAELE>0 4.25)

ik

If the functions f; are such that the condition (4.16) is satisfied, then, in perfect analogy with the pro-
cedure in the preceding section, we can show that the system (4.22) admits of total relaxation of the gen-
eralized parameters £, i.e., { ~0as t—<.

Consequently, the solution of Eqs. (4.17) at constant Xy and at initial values of yj = 0 tends to the
solutions yj —~yi° as t—<.

In fact, at t = 0 we have y, =y " + gk(O) = 0. But, as shown above, £, —0 as t— <. This proves the
statement made above.

5. Relaxation Processes in Viscoelastic Media

The analysis presented in Sec. 4 of the solutions of the kinetic equations of irreversible processes
can be used to investigate relaxation processes that occur in various types of viscoelastic media. To this
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end it is necessary to take the generalized forces to be the stresses ;. and the generalized coordinates to
be the strain-tensor components g - '

We consider media with a separable strain tensor
e (£) = e’ + 2™ (2)
where g5 is the instantaneous elastic strain and 4} * (t) is the creep strain that develops in time,

If we assume that the elastic strain obeys Hooke's law, and we use for the creep strains relations of
the Bailey type, then the equations that determine the isothermal deformation of the medium of the type
considered are written as follows:

L ds .
ik Z Aienm _c-ljtl_ + fir (Bis Sagr v oy 550 T) (5.1)

m,

We assume that the irreversibility is due to creep strain. Then the thermodynamic requirement
d;S1de™> 0
reduces to the requirement that the stress work on the creep strain be positive, i.e.,

N sideti >0 (6.2)
i,k

or

Z Sinfin (S1ts Sazs oeer 333 To) >0

iLE

If we stipulate that the functions f;; must satisfy the inequality (5.2) and that conditions analogous to
{4.4) and (4.5) be fulfilled, then, in accordance with the analysis given in Sec. 4 for the system (4.9), we can
state that Egs. (5.1) at constant strains (gj = const} do indeed describe the stress-relaxation process.

Let us dwell briefly on media of another type, characterized by the fact that the stress tensor can be
represented in the form of a sum of two tensors, elastic (reversible) and viscous (irreversible), i.e.,
Gik = 3"+ IFip

The defining equations of the isothermal deformation of media of this type can be expressed in the
form

de dess deas .
Sy == Z Ai.’-.‘mn£nn1.+fik <Tt‘l 1 TJT""’—E—E—’ 70> (5'3)
m,n

We present a thermodynamic analysis of these equations. We assume that at some instant of time,
when the creep strains have reached definite values, the siresses are suddenly removed. The subsequent
course of the deformation can be of the relaxation type; i.e., all the strains can asymptotically approach
zero. It can be proved that this is indeed the case if the functions f;, are such that the basic thermody-
namiec requirement

degy, denn  des dess
%"Jff’ik <717 e S Ta) >0
is satisfied, and the coefficients Ajinm are such that the following conditions hold:
2 AjpnmEikEnm > 05 Ajpnm = Apmin
i, ko, m
This proof follows directly from the analysis given in Sec. 4 for the thermodynamic system (4.18).

In complete analogy with the foregoing, we can show that Egs. (5.3) at constant stresses describe the
isothermal process of limited creep if the elastic moduli and the functions fik satisfy a number of basic
thermodynamic requirements and some additional requirements, of the type of (4.24) and (4.25).
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The thermodyhamic approach to the analysis of solutions of the relaxation equations of the simplest
viscoelastic media, which was outlined above in general form, can be used also for more complicated media,
particularly for media in which both the stress tensor and the strain tensor are simultaneously separable.

We have demonstrated the close connection that exists between.entropy production in irreversible
processes and the Lyapunov function.

Satisfaction of the thermodynamic requirements (positive rate of growth of the entropy connected with
irreversible processes) makes it possible to impose significant limitations on the character of the kinetic
equations describing various irreversible processes. These limitations are important not only from the
theoretical but also from the practical point of view, since they can decrease the volume of the experimen-
tal work required to establish the concrete form of the kinetic equations of irreversible processes for
various systems.
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