
T H E R M O D Y N A M I C S  O F  I R R E V E R S I B L E  P R O C E S S E S  

A N D  T H E  L Y A P U N C V - F U N C T I O N  M E T H O D  

V. L .  B a z h a n o v  a n d  I .  I .  G o l ' d e n b l a t  UDC 678:539.4.001.2 

A connection is established between the production of entropy in i r r eve r s ib l e  p rocesses  and 
the Lyapunov function of the corresponding sys tem of equations. Thermodynamic  limitations 
are  formulated on the functions that enter  in the kinetic equations. The resul ts  are  il lus- 
t rated with relaxation p rocesses  in viscoelast ic  media. 

1 .  P r i n c i p l e s  o f  C l a s s i c a l  T h e r m o d y n a m i c s  

Class ical  thermodynamics  is based on the concepts of the element of work performed on the sys tem 

6A = Xldg 1 ~- . . .~- X,,dg~ (1.1) 

and the element  of heat 5Q del ivered to the sys tem.  Here X k and Yk are general ized thermodynamic forces  
and coordinates ,  respect ively .  

The f i r s t  law of thermodynamics  s tates  that when a sys tem goes f rom a given state to an infinitesi- 
mally close one the increment  of the internal  energy E is equal to the sum of the heat del ivered to the sys tem 
and the work performed on the sys t em 

dE = 6Q -~ 6A (1.2) 

It must  be emphasized here  that the internal energy of the sys tem is a unique function of its instan- 
taneous state.  The increment  of the internal energy does not depend on the path t r a v e r s e d  by the sys tem 
f rom one state to the other.  On the con t ra ry ,  the work performed on the sys tem and the heat delivered to 
it depend in the general  case on the path. Thus, dE is a total differential while 5A and 5Q are not total dif- 
ferent ia ls .  

The second law of thermodynamics  states that the amount of heat obtained in,any revers ible  process  
always has integrating divisors  and that among these divisors  there is one that depends only on the tem- 
perature  of the sys tem.  

The second law of thermodynamics  can be expressed  analytically in the fo rm 

(1.3) dS = 6Q/T 

where T is the absolute  tempera ture  and S is the entropy of the sys tem.  

As is well known, the very  concept of the absolute tempera ture  can be introduced only on the basis of 
the second law. Just  like the internal energy,  the entropy S is a path-independent function of the state of the sys tem.  

Classical  thermodynamics  a s se r t s  also that in the case of nonequilibrium processes  there exists the 
inequality 

dS > 6Q/T (1.4) 
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2.  N o n e q u i l i b r i u m  S t a t e s  o f  T h e r m o d y n a m i c  S y s t e m s  

In c l a s s i ca l  the rmodynamics  of equi l ibr ium s ta tes  or  p r o c e s s e s ,  all the the rmodynamic  p a r a m e t e r s  
(including the absolute t empera tu re )  and functions have r igorous  and exact  definit ions.  

Considerable  difficulties a r i se  in the definition of the fundamental  the rmodynamic  p a r a m e t e r s  when 
i t  comes  to nonequil ibrium s ta t e s  or  p r o c e s s e s .  

The definitions of purely geome t r i c  or  k inemat ic  p a r a m e t e r s ,  such as par t ic le  d i sp lacements  or  
ve loc i t ies ,  the s t ra in  t ensor  or  the s t r a in - ra t e  t ensor ,  e tc . ,  encounter  no difficulty wha tever  even in the 
case  of nonequil ibrium p r o c e s s e s .  It  is also possible  to define uniquely the m a s s  or  the d e n s i t y o f a  medium.  

Such concepts ,  however ,  as the t e m p e r a t u r e  of a nonequi l ibr ium s ta te  of the s y s t e m  or  the s t r e s s  
t ensor  mus t  be sui tably defined. 

We note that in the case  of s ta t ionary  nonequi l ibr ium p r o c e s s e s ,  the concepts  of t e m p e r a t u r e  and 
s t r e s s  t ensor  (as well as of many other  the rmodynamic  p a r a m e t e r s )  acquire  natural  phenomenological  
definit ions,  s ince these p a r a m e t e r s  can be measu red  by the usual ins t ruments  used in the case of equi l ib-  
r i um p r o c e s s e s .  

As is well  known, in papers  devoted to the the rmodynamics  of a r b i t r a r y  i r r e v e r s i b l e  p r o c e s s e s ,  the 
widely used main p a r a m e t e r s  a re  the the rmodynamic  p a r a m e t e r s  for which definitions exis t  only in the 
case  of equi l ibr ium s ta tes .  It  is a s sumed  in this case ,  however ,  that the the rmodynamic  p a r a m e t e r s  of the 
nonequi l ibr ium p r o c e s s e s  can be ass igned a definite meaning by using the methods of s ta t i s t i ca l  physics .  
This makes  it  possible  t o u s e  them also in phenomenological  t r e a tmen t s .  We note in this connection that  
"according to t es t imony left  by Planck in his m e m o i r s ,  even Kirchhoff  wanted to r e s t r i c t  the ent ropy con- 
cept  to r e v e r s i b l e  p r o c e s s e s .  The f i r m  conviction of the genera l i ty  of the concept ,  which Planck e x p r e s s e d  
a l ready  in his d i s se r ta t ion ,  had led h im in 1900 to the radia t ion law and to quantum theory"  [3]. 

3 .  T h e  P r i n c i p l e  o f  L o c a l  E q u i l i b r i u m  a n d  I t s  G e n e r a l i z a t i o n  

The the rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  usual ly begins with the following p r e m i s e s :  

1) the second law of the rmodynamics  of r e v e r s i b l e  p r o c e s s e s  r ema ins  in force  also in the case  of i r r e -  
ve r s ib l e  p r o c e s s e s ,  but only locally (this is the s o - c a l l e d  principle of local  equi l ibr ium state);  i .e . ,  i t  is 
a s sumed  that  re la t ions  (1.2) and (1.3) a re  valid locally.  

2) In each local volume,  all the the rmodynamic  functions (internal energy ,  f ree  energy ,  entropy,  etc.) 
a r e  functions of the same  p a r a m e t e r s  as in the case of equi l ibr ium; consequently,  these functions do not 
depend explici t ly on the coordinates  and on the t ime.  

3) The gradients  of the ve loc i t ies ,  t e m p e r a t u r e s ,  s t r e s s e s ,  e tc .  a re  sma l l  enough in the cons idered  
sy s t em.  

4) The total change of the energy  and ent ropy is made up addit ively of the changes of these functions 
in the individual e lements  of the sys t em.  

It  might  s e e m  that the four foregoing p r e m i s e s  of the the rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  
cont radic t  s t rongly the principle of c l a s s i ca l  the rmodynamics  of r e v e r s i b l e  p r o c e s s e s ,  pa r t i cu la r ly  the 
fundamental  c l a s s i ca l  re la t ion  that  s ta tes  that  the entropy of an adiabat ical ly  i so la ted  s y s t e m  i n c r e a s e s  in 
any i r r e v e r s i b l e  p roces s .  It is easy  to ver i fy ,  however ,  that  there  is no contradict ion he re .  Relation (1.3) 
is  a s sumed  valid only local ly ,  so that when the s y s t e m  as a whole is cons idered  the assumpt ion  of local 
equi l ibr ium makes  it  possible  to calculate  the ent ropy change due to the nonequi l ibr ium p r o c e s s e s .  It  is 
thus possible  to demons t ra t e  for  an adiabat ical ly  isola ted sys t em,  in full accord  with c l a s s i ca l  the rmody-  
namics ,  that  the entropy as a whole i n c r e a s e s  for  such a s y s t e m  in the case  of an i r r e v e r s i b l e  p roces s .  

It  should be noted, however ,  that the principle of local equi l ibr ium is valid only for  the so -ca l l ed  
t r a n s p o r t  phenomena ( thermal  conductivity,  diffusion, etc.) .  In the case  of viscous r e s i s t a n c e s ,  i r r e v e r s i b l e  
chemica l  reac t ions ,  e tc . ,  re la t ion  (1.3) no longer  holds even local ly.  It mus t  be rep laced  by 

d S  -~ r + dcl (3.1) 

where  d~ is the local  production of entropy.  

Thus,  in the case  of i r r e v e r s i b l e  p r o c e s s e s ,  both the functional f d Q / T  and the functional of en t ropy 
production depend on the path taken by the s y s t e m  f rom one s ta te  to the o ther .  The i r  sum,  however ,  which 
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is equal to the change of the entropy for the indicated transition, does not depend on the path. This is the 
most general formulation of the second law of thermodynamics. 

The foregoing principles are sufficiently well-known and are used in many papers, although their 
authors frequently do not formulate precisely the initial assumptions used by them. 

We now note the following: it is proved in the general theory of systems that if the parameters of a 
dynamic system are defined for a continuous time and are sufficiently smooth functions of the time, then, 
subject to some other conditions which will not be formulated here, the parameters of the dynamic system 
must satisfy a certain system of differential equations. This theorem, due to R. Kalman, holds also for 
irreversible processes occurring in thermodynamic systems, since any thermodynamic system satisfies 
the definition formulated for a dynamic system by R. Kalman, P. Falb, and M. Arbib [4]. We can thus de, 
scribe irreversible thermodynamic systems with the aid of systems of differential equations. 

4. Kinetic Equations of Irreversible Processes, 

Entropy Production, and the Lyapunov-Function Method 

We consider a thermodynamic system whose generalized coordinates (yk) are made up additively of 
reversible (yk ~ and irreversible (yk*) parts, i.e., 

y~ = yk ~ + g~* (4 .1)  

Assume that the defining equations of the system are expressed for an isothermal process (T = const) 
as follows: 

fo r  the r e v e r s i b l e  pa r t s  of the g e n e r a l i z e d  coord ina t e s  

U] = ~, AkiX~ (4 .2 )  

for  the i r r e v e r s i b l e  pa r t s  of  the g e n e r a l i z e d  coo rd ina t e s  

dyn* 
d t =  ]~ ( X I '  X e  . . . . .  Xn, T) (4.3) 

We a s s u m e  that  the coef f ic ien t s  Aki in Eqs .  (4.2) and the funct ions f k  in (4.3) a r e  such that  the fol low- 
ing condi t ions  a r e  sa t i s f i ed :  

Ah~XI~X~ ~ 0 (4.4) 
i 

/~ (0, 0 ..... 0, T) = 0 (4.5) 

In addi t ion,  we a s s u m e  that  the coef f ic ien t s  in (4.2) a re  such that  Aki = Aik. 

Di f fe ren t ia t ing  (4.1) and (4.2) with r e s p e c t  to t ime and taking '(4.3) into accoun t ,  we obtain the fol low- 
ing kinet ic  equat ions  fo r  an  i s o t h e r m a l  p r o c e s s  o c c u r r i n g  in the c o n s i d e r e d  s y s t e m :  

dYk = ~_ A~ dX~ r 
d--/- -~--{-]~.(X1, X2 ..... , X~, T) (4.6) 

i 

According to the definition given above for generalized thermodynamic forces and the generalized 
coordinates corresponding to them, the rate of entropy production is obviously 

dis dy,~* 
Z = ~-~'-:+~liXlf  -'~ - - + E X i J ~ f ( X I ,  X2 ..... ~ n , r )  (4.7) 

The rate of entropy change due to the irreversible processes is designated here, as is customary, by 
diS/dt, and should be positive in accord with the principles of thermodynamics. 

We emphasize that we do not calculate here the entropy of the system as such. To solve this problem 
it would be necessary to consider the heat exchange between the system and the ambient. The analysis that 
follows is based only on the fact that the rate of entropy production due to the irreversible processes in the 
system should be positive. 
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Since the  t e m p e r a t u r e  i s  p o s i t i v e ,  i t  fo l lows f r o m  (4.7) tha t  

XJ~ (X1, X~ . . . . .  X~, T) > 0 (4.8) 
k 

Thus, the kinetic equations (4.6) of the considered system are meaningful if the functions fk are such 
that this condition is satisfied. This is required by thermodynamics. 

We consider now the isothermal process of relaxation of general forces X k, which occurs at fixed 
values of the generalized coordinates (Yk = eonst). 

The relaxation equations take the form 

dXi 
~ Ak i - -~  + / ~  (Xl, X2 . . . . .  Xn, T ) =  0 (4.9) 

We s h a l l  show tha t  i f  the t h e r m o d y n a m i c  cond i t ion  (4.8) i s  s a t i s f i e d ,  then  t h e s e  equa t ions  i n d e e d  d e -  
s c r i b e  a r e l a x a t i o n  p r o c e s s ;  i . e . ,  t hey  have  so lu t ions  X i - - 0  a s  t - ~ o .  In o t h e r  w o r d s ,  we m u s t  show tha t  
the z e r o - o r d e r  s o l u t i o n  of {4.9) i s  a s y m p t o t i c a l l y  s t a b l e  a s  a whole  in  the Lyapunov  s e n s e .  We use  fo r  th i s  
p u r p o s e  the L y a p u n o v - - B a r b a s h i n - - K r a s o v s k i i  t h e o r e m ,  which has  the a d v a n t a g e  tha t  no l i m i t a t i o n s  wha t -  
e v e r  a r e  i m p o s e d  on  the v a l u e s  of the g e n e r a l i z e d  f o r c e s  X i a t  the i n s t a n t  of  t i m e  t = 0. We now f o r m u l a t e  
th i s  t h e o r e m  [1]. 

A s s u m e  tha t  t h e r e  e x i s t s  a funct ion V(x) wi th  r e a l  va lue s  and with  the  fo l lowing  p r o p e r t i e s :  

1) V(x) > 0 fo r  a l l  x ~  0, V(0) = 0 

2) [dV(x) ] /d t  < 0 fo r  a l l  x ~  0 

3) V(X)- -  ~ f o r  l l x [ [ ~  ~ 

Then  the s y s t e m  

d x  i 
dt = ~{ (xl, x.. . . . . .  x~, t) (i ----- 1, 2 . . . . .  n) 

i s  a s y m p t o t i c a l l y  s t a b l e  a s  a whole  a t  (pi(0, 0, . . . ,  0, t) = 0. 

In th i s  f o r m u l a t i o n  of  the t h e o r e m ,  x i s  an n - d i m e n s i o n a l  v e c t o r ,  i . e . ,  x = (xl ,  x2 . . . . .  Xn). 

We choose  the Lyapunov  funct ion  fo r  the c o n s i d e r e d  s y s t e m  of  r e l a x a t i o n  equa t i ons  (4.9) in the f o r m  

V = ~1~ ~, A~.iXkXi (4.10) 
i . k  

The a s s u m p t i o n  (4.4) m a d e  above  c o n c e r n i n g  the c o e f f i c i e n t s  Aki i m p l i e s  tha t  the p r e s e n t e d  q u a d r a t i c  
f o r m  (4.10) i s  p o s i t i v e  de f in i t e  a t  X i r 0. 

The t ime  d e r i v a t i v e  of  the Lyapunov  funct ion (4.10) i s  

dV dXi 
d-Y = ~ A k ~ '2-i- X k Lk 

Mul t ip ly ing  (4.9) by  X k and s u m m i n g  o v e r  i and  k,  we g e t  

Hence 

~t --~- ~ dXi A~ - - ~  X~ = - -  ~,  X~f~ (X~, X~ . . . . .  X,~, T) < 0 
i .k It 

in  a c c o r d  wi th  the t h e r m o d y n a m i c  cond i t i on  (4.8). 

In a d d i t i o n ,  i t  fo l lows  f r o m  (4.10) tha t  V(0, 0 . . . .  , 0) = 0 and  V - - ~  a s  X i ~  ~ .  
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Thus, all the conditions Of the Lyapunov-Barbash in -Krasovsk i i  theorem are  fulfilled. Consequently, 
if the fundamental thermodynamic  requ i rement  (4.8) is satisfied, then Eqs. (4.9) actually describe a re laxa-  
tion process .  It is easy  to note that in our  sys tem the rate of entropy production as a resul t  of the i r r e -  
vers ible  relaxation of the thermodynamic  forces  is equal to 

t dV (4.11) 
C~ -~ -~  E X~f~ ( X 1 ,  X 2 . . . . .  Xn, T) = T dt 

It is known that any a r b i t r a r y  (in a sufficiently broad sense [2]) function of a Lyapunov function is it- 
self  a Lyapunov function. One should therefore  choose f rom among these Lyapunov functions those that 
sat isfy the principal thermodynamic  relat ion (4.7) for the considered sys tem.  In addition, N. N. Krasovski i  
[5] has proved the existence of a Lyapunov function for any asymptot ical ly  stable sys t em in the sense of 
Lyapunov. This proves in essence  the existence of entropy production by a nonequilibrium process  in the 
considered sys tem.  

Equation (4.11) is the s tar t ing point for the construct ion of the Lyapunov function whose propert ies  
lead to conclusions concerning the behavior  of the investigated sys tem of equations. 

We consider  now a thermodynamic  sys tem whose general ized forces (X k) are  made up additively of 
revers ib le  (Xk ~ and i r r eve r s ib l e  (Xk*) par ts ,  i .e. ,  

X~ = X~ ~ ~- X~* (4.12) 

Let us assume that the defining equations of the sys tem for an i so thermal  p rocess  (T = const) take 
the following fo rms :  

for the revers ib le  par t  of the general ized forces  

X~ ~ = ~, A~iy~ (4.13) 

for the i r r eve r s ib l e  par t  of the general ized forces  

�9 [dyl dy2 dYn ) X~* = Is ~-3Y ' ~ ..... -3Y' T (4.14) 

We assume that the coefficients Aki and the functions f k  are  such that the following conditions are 
satisfied: 

~, A~iy~Yi ~ 0 (4.15) 
i , k  

]~ (0, 0 ..... 0, T) = 0 (4.16) 

Just  as before,  we assume that the coefficients in (4.13) are such that Aki = Aik. The basic kinetic 
equations of an i so thermal  p rocess  of the considered type can be expressed  in the form 

(~t dy-Z~ dYn T) (4.17) 
Xk  : ~, A~y i  +/1~ ' dt . . . . .  d--i-' 

i 

When the general ized forces  are  removed,  the sys tem under considerat ion admits  of complete re laxa-  
tion of the general ized coordinates .  The relaxation equations are then written as follows: 

( ~  dy2 dYn ) = 0  ~, Ak~Y~ -}- ]~ ' ~ . . . . .  -d7 ' 1' (4.18) 
i 

From the point of view of the thermodynamics, it is necessary and sufficient for the relaxation proc- 

esses inour system that the rate of the entropy growth connected with this process be positive; i.e., it is 
necessary and sufficient to satisfy the condition 

dis i , ~_~ t ,~odYl~ 4 fdyl dy2 dYn ) 

k k 
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Since, however,  the absolute tempera ture  is always positive, it is necessa ry  to have 

~/-jk ' W ..... - ~ ,  T ~ 0  
k 

(4.19) 

We choose a Lyapunov function in the form 

V = 1/~ ~9~ A ~ y ~ y  ! 
4.k  

Taking the assumptions made above concerning the coefficients Aki and the functions f k  into account, 
as well as the thermodynamic requi rement  (4.19), it is easy  to show, repeating the reasoning of Sec. 3, that 
all the requi rements  of the Lyapunov-Barbash in -Krasovsk i i  theorem are  satisfied,  and therefore  Eqs. 
(4.18) indeed descr ibe the total relaxation of the general ized coordinates.  

Let  us consider  one more  problem. Assume that the general ized forces  have reached cer tain values 
and then remain  constant; 

Xh ----- const (4.20) 

It can be shown that in accord  with (4.17) the general ized coordinates tend in this case to cer tain 
finite l imits.  We assume that the general ized coordinates a r e  made up at an a rb i t r a ry  instant of time of 
cer ta in  constant quantities yk ~ and functions of the time ~k(t), i .e.,  

y~ (t) = yi ~ -t- ~ (t) (4.21) 

with 
y~ (o) = y?  + ~.~ (0) = 0, ~ (0) = - y~~ ~ 0 

Then, taking (4.20) and (4.21) into account, the basic  kinetic equations (4.17) take the form 

if it is assumed that 

A~ i  + 1~ ' d--i- ..... d--i-' T = 0 
i 

X~ = ~.j A~Yi ~ (4.23) 
i 

In accordance with (4.19), the functions f k  sat isfy the thermodynamic requi rement  

~ d ~  [d~l d~ d~ T ) > 0  (4.24) 

Ir 

We assume also that the coefficients Aki are  symmet r ica l ,  i .e. ,  Aki = Aik, and are  such as to sat isfy 
the inequality 

Aki~k~i ~ 0 (4.25) 
,f~ 

If the functions f k  are such that the condition (4.16) is satisfied, then, in perfect  analogy with the pro- 
cedure in the preceding section, we can show that the sys tem (4.22) admits of total relaxation of the gen- 
era l ized pa ramete r s  ~k' i .e. ,  ~k ~ 0  as t ~ .  

Consequently, the solution of Eqs. (4.17) at constant X k and at initial values of Yk = 0 tends to the 

solutions Yk ~Yk ~ as t ~ r162 

In fact, at  t = 0 we have Yk = Yk ~ + ~k (0) = 0. But, as shown above, ~k ~ 0  as t ~  r This proves the 
s ta tement  made above.  

5 .  R e l a x a t i o n  P r o c e s s e s  in V i s c o e l a s t i c  M e d i a  

The analysis  presented in Sec. 4 of the solutions of the kinetic equations of i r revers ib le  p rocesses  
can be used to investigate relaxation processes  that occur  in various types of viscoelast ic  media. To this 
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end it is necessary to take the generalized forces to be the stresses aik and the generalized coordinates to 

be the strain-tensor components gik" 

We consider media with a separable strain tensor 

e~ (t) = ~~ + e~* (t) 

where ~ik ~ is the instantaneous elastic strain and gik* (t) is the creep strain that develops in time. 

If we assume that the elastic strain obeys Hooke's law, andwe use for the creep strains relations of 

the Bailey type, then the equations that determine the isothermal deformation of the medium of the type 
considered are written as follows: 

d:nm (5.1) 
d t  ~ ~ " " " ' 5 3 ~ '  

We assume that the i r r eve r s ib i l i t y  is due to c reep  strain.  Then the thermodynamic  requi rement  

diS/dt > 0 

reduces  to the requi rement  that the s t r e ss  work on the c reep  s t ra in  be positive, i .e. ,  

o r  

~., z~k6e*~ ~ 0 (5.2) 
i, tf 

~, :~k/~ (:~, :~2 ..... :33, To) > 0 
i,/,: 

If we stipulate that the functions f i k  must  sat isfy the inequality (5.2) and that conditions analogous to 
(4.4) and (4.5) be fulfilled, then, in accordance  with the analysis  given in Sec. 4 for the sys tem (4.9), we can 
state that Eqs. (5.1) at constant  s t ra ins  (elk = const) do indeed descr ibe the s t ress - re laxa t ion  process .  

Let  us dwell br ief ly  on media of another type, charac te r ized  by the fact that the s t r e s s  tensor  can be 
represen ted  in the form of a sum of two tensors ,  elast ic  (reversible) and viscous ( i r revers ible) ,  i .e. ,  

Cik ~ ~i~ ~ ~- ~ * i ~  

The defining equations of the i so thermal  deformation of media of this type can be expressed in the 
form 

( d~.u ds~,.~ de33 To) (5.3) 

m , n  

We present  a thermodynamic  analysis  of these equations. We assume that at some instant of t ime, 
when the c reep  s t ra ins  have reached definite values,  the s t r e s se s  are suddenly removed.  The subsequent 
course  of the deformat ion can be of the relaxation type; i . e . ,  all the s t ra ins  can asymptot ical ly  approach 
zero .  It can be proved that this is indeed the case if the functions f i k  are  such that the basic thermody-  
namic requi rement  

ro)>0 - ~ - f ~  \ ~/ ' dt ..... d--V' 
i , k  

is satisfied,  and the coefficients Aiknm are  such that the following conditions hold: 

~, Ai~,ei~e~ m > 0, A i /~  = A~r~ 
~, ~, 7l, rrt 

This proof follows direct ly  f rom the analysis  given in See. 4 for the thermodynamic  sys tem (4.18). 

In complete analogy with the foregoing, we can show that Eqs. (5.3) at constant  s t r e s s e s  descr ibe the 
i so thermal  p rocess  of limited creep if the elast ic  moduli and the functions f i k  sat isfy a number of basic 
thermodynamic  requi rements  and some additional requi rements ,  of the type of (4.24) and (4.25). 
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The the rmodynamic  approach to the analys is  of solutions of the re laxat ion  equations of the s imp le s t  
v i scoe las t ic  media ,  which was outlined above in genera l  form,  can be used also for more  compl ica ted  media ,  
pa r t i cu la r ly  for  med ia in  which both the s t r e s s  t ensor  and the s t ra in  t ensor  a re  s imul taneous ly  sepa rab le .  

We have demons t ra ted  the close connection that ex is t s  b e t w e e n e n t r o p y  production in i r r e v e r s i b l e  
p r o c e s s e s  and the Lyapunov function. 

Sat isfact ion of the the rmodynamic  r equ i r emen t s  (positive ra te  of growth of the ent ropy connected with 
i r r e v e r s i b l e  p roces ses )  makes  it  possible  to impose  s ignif icant  l imitat ions on the c h a r a c t e r  of the kinetic 
equations descr ib ing  var ious  i r r e v e r s i b l e  p r o c e s s e s .  These l imitat ions a re  impor tan t  not only f r o m  the 
theore t ica l  but also f rom the p rac t ica l  point of view, since they can dec rea se  the volume of the e x p e r i m e n -  
tal  work requi red  to es tabl ish  the concre te  fo rm of the kinetic equations of i r r e v e r s i b l e  p r o c e s s e s  for  
var ious  s y s t e m s .  

L I T E R A T U R E  C I T E D  

1. E . A .  Barbashin  and N. N. Krasovsk i i ,  "The s tabi l i ty  of motion as a whole,"  Dokl. Akad. Nauk SSSR, 
86.__, No. 3 (1952). 

2. G . N .  Duboshchin, Pr inc ip les  of the Theory  of Motion Stability [in Russian] ,  Izd. MGU (1952), p. 106. 
3. A. Sommerfe ld ,  Thermodynamics  and Stat is t ical  Mechanics ,  Academic  P r e s s  (1956). 
4. R . E .  Kalman,  P. Falb, and M. Arbib,  Outlines of the Mathemat ica l  Theory  of Sys tems  [Russian 

t rans la t ion] ,  Mir  (1971). 
5. N . N .  Krasovsk i i ,  Some P rob lems  in the Theory  of the Stability of Motion [in Russian],  F izmatg iz ,  

Moscow, 1959). 

524 


